
20
Algorithms for finite fields

This chapter discusses efficient algorithms for factoring polynomials over finite
fields, and related problems, such as testing if a given polynomial is irreducible,
and generating an irreducible polynomial of given degree.

Throughout this chapter, F denotes a finite field of characteristic p
and cardinality q = pw.

In addition to performing the usual arithmetic and comparison operations in F ,
we assume that our algorithms have access to the numbers p, w, and q, and have the
ability to generate random elements of F . Generating such a random field element
will count as one “operation in F ,” along with the usual arithmetic operations. Of
course, the “standard” ways of representing F as either Zp (if w = 1), or as the ring
of polynomials modulo an irreducible polynomial over Zp of degree w (if w > 1),
satisfy the above requirements, and also allow for the implementation of arithmetic
operations in F that take time O(len(q)2) on a RAM (using simple, quadratic-time
arithmetic for polynomials and integers).

20.1 Tests for and constructing irreducible polynomials
Let f ∈ F [X] be a monic polynomial of degree ` > 0. We develop here an efficient
algorithm that determines if f is irreducible.

The idea is a simple application of Theorem 19.10. That theorem says that for
every integer k ≥ 1, the polynomial X q

k−X is the product of all monic irreducibles
whose degree divides k. Thus, gcd(X q−X , f) is the product of all the distinct linear
factors of f . If f has no linear factors, then gcd(X q

2−X , f) is the product of all the
distinct quadratic irreducible factors of f . And so on. Now, if f is not irreducible,
it must be divisible by some irreducible polynomial of degree at most `/2, and if g
is an irreducible factor of f of minimal degree, say k, then we have k ≤ `/2 and
gcd(X q

k − X , f) 6= 1. Conversely, if f is irreducible, then gcd(X q
k − X , f) = 1 for

522

20.1 Tests for and constructing irreducible polynomials 523

all positive integers k up to `/2. So to test if f is irreducible, it suffices to check if
gcd(X q

k − X , f) = 1 for all positive integers k up to `/2—if so, we may conclude
that f is irreducible, and otherwise, we may conclude that f is not irreducible.
To carry out the computation efficiently, we note that if h ≡ X qk (mod f), then
gcd(h − X , f) = gcd(X q

k − X , f).
The above observations suggest the following algorithm.

Algorithm IPT. On input f , where f ∈ F [X] is a monic polynomial of degree
` > 0, determine if f is irreducible as follows:

h← X mod f
for k ← 1 to b`/2c do

h ← hq mod f
if gcd(h − X , f) 6= 1 then return false

return true

The correctness of Algorithm IPT follows immediately from the above discus-
sion. As for the running time, we have:

Theorem 20.1. Algorithm IPT uses O(`3 len(q)) operations in F .

Proof. Consider an execution of a single iteration of the main loop. The cost of
the qth-powering step (using a standard repeated-squaring algorithm) is O(len(q))
multiplications modulo f , and so O(`2 len(q)) operations in F . The cost of the
gcd computation is O(`2) operations in F . Thus, the cost of a single loop iteration
is O(`2 len(q)) operations in F , from which it follows that the cost of the entire
algorithm is O(`3 len(q)) operations in F . 2

Using a standard representation for F , each operation in F takes timeO(len(q)2)
on a RAM, and so the running time of Algorithm IPT on a RAM is O(`3 len(q)3),
which means that it is a polynomial-time algorithm.

Let us now consider the related problem of constructing an irreducible poly-
nomial of specified degree ` > 0. To do this, we can simply use the result of
Theorem 19.12, which has the following probabilistic interpretation: if we choose
a random, monic polynomial f of degree ` over F , then the probability that f is
irreducible is at least 1/2`. This suggests the following probabilistic algorithm:

Algorithm RIP. On input `, where ` is a positive integer, generate a monic irre-
ducible polynomial f ∈ F [X] of degree ` as follows:

524 Algorithms for finite fields

repeat
choose c0, . . . , c`−1 ∈ F at random
set f ← X ` +

∑`−1
i=0 ciX

i

test if f is irreducible using Algorithm IPT
until f is irreducible
output f

Theorem 20.2. Algorithm RIP uses an expected number of O(`4 len(q)) opera-
tions in F , and its output is uniformly distributed over all monic irreducibles of
degree `.

Proof. This is a simple application of the generate-and-test paradigm (see Theo-
rem 9.3, and Example 9.10 in particular). Because of Theorem 19.12, the expected
number of loop iterations of the above algorithm is O(`). Since Algorithm IPT
uses O(`3 len(q)) operations in F , the statement about the running time of Algo-
rithm RIP is immediate. The statement about its output distribution is clear. 2

The expected running-time bound in Theorem 20.2 is actually a bit of an over-
estimate. The reason is that if we generate a random polynomial of degree `, it
is likely to have a small irreducible factor, which will be discovered very quickly
by Algorithm IPT. In fact, it is known (see §20.7) that the expected value of
the degree of the least degree irreducible factor of a random monic polynomial of
degree ` over F is O(len(`)), from which it follows that the expected number of
operations in F performed by Algorithm RIP is actually O(`3 len(`) len(q)).

EXERCISE 20.1. Let f ∈ F [X] be a monic polynomial of degree ` > 0. Also, let
ξ := [X]f ∈ E, where E is the F -algebra E := F [X]/(f).

(a) Given as input α ∈ E and ξq
m ∈ E (for some integer m > 0), show how to

compute the value αq
m ∈ E, using just O(`2.5) operations in F , and space

for O(`1.5) elements of F . Hint: see Theorems 16.7 and 19.7, as well as
Exercise 17.3.

(b) Given as input ξq
m ∈ E and ξq

m′ ∈ E, where m and m′ are positive integers,
show how to compute the value ξq

m+m′ ∈ E, using O(`2.5) operations in F ,
and space for O(`1.5) elements of F .

(c) Given as input ξq ∈ E and a positive integer m, show how to compute the
value ξq

m ∈ E, using O(`2.5 len(m)) operations in F , and space for O(`1.5)
elements of F . Hint: use a repeated-squaring-like algorithm.

EXERCISE 20.2. This exercise develops an alternative irreducibility test.
(a) Show that a monic polynomial f ∈ F [X] of degree ` > 0 is irreducible if

and only if X q
` ≡ X (mod f) and gcd(X q

`/s − X , f) = 1 for all primes s | `.

20.2 Computing minimal polynomials in F [X]/(f) (III) 525

(b) Using part (a) and the result of the previous exercise, show how to deter-
mine if f is irreducible using O(`2.5 len(`)ω(`) + `2 len(q)) operations in
F , where ω(`) is the number of distinct prime factors of `.

(c) Show that the operation count in part (b) can be reduced to

O(`2.5 len(`) len(ω(`)) + `2 len(q)).

Hint: see Exercise 3.39.

EXERCISE 20.3. Design and analyze a deterministic algorithm that takes as input
a list of irreducible polynomials f1, . . . ,fr ∈ F [X], where `i := deg(fi) for
i = 1, . . . , r, and assume that {`i}ri=1 is pairwise relatively prime. Your algorithm
should output an irreducible polynomial f ∈ F [X] of degree ` :=

∏r
i=1 `i using

O(`3) operations in F . Hint: use Exercise 19.5.

EXERCISE 20.4. Design and analyze a probabilistic algorithm that, given a monic
irreducible polynomial f ∈ F [X] of degree ` as input, generates as output a random
monic irreducible polynomial g ∈ F [X] of degree ` (i.e., g should be uniformly
distributed over all such polynomials), using an expected number of O(`2.5) oper-
ations in F . Hint: use Exercise 18.9 (or alternatively, Exercise 18.10).

EXERCISE 20.5. Let f ∈ F [X] be a monic irreducible polynomial of degree `, let
E := F [X]/(f), and let ξ := [X]f ∈ E. Design and analyze a deterministic algo-
rithm that takes as input the polynomial f defining the extension E, and outputs
the values

sj := TrE/F (ξj) ∈ F (j = 0, . . . , ` − 1),

using O(`2) operations in F . Here, TrE/F is the trace from E to F (see §19.4).
Show that given an arbitrary α ∈ E, along with the values s0, . . . , s`−1, one can
compute TrE/F (α) using just O(`) operations in F .

20.2 Computing minimal polynomials in F [X]/(f) (III)
We consider, for the third and final time, the problem considered in §17.2 and
§18.5: f ∈ F [X] is a monic polynomial of degree ` > 0, and E := F [X]/(f) =
F [ξ], where ξ := [X]f ; we are given an element α ∈ E, and want to compute the
minimal polynomial φ ∈ F [X] of α over F . We develop an alternative algorithm,
based on the theory of finite fields. Unlike the algorithms in §17.2 and §18.5, this
algorithm only works when F is finite and the polynomial f is irreducible, so that
E is also a finite field.

From Theorem 19.15, we know that the degree of α over F is the smallest pos-
itive integer k such that αq

k
= α. By successive qth powering, we can determine

526 Algorithms for finite fields

the degree k and compute the conjugates α, αq, . . . , αq
k−1

of α, using O(k len(q))
operations in E, and hence O(k`2 len(q)) operations in F .

Now, we could simply compute the minimal polynomial φ by directly using the
formula

φ(Y) =
k−1
∏

i=0

(Y − αq
i

). (20.1)

This would involve computations with polynomials in the variable Y whose coef-
ficients lie in the extension field E, although at the end of the computation, we
would end up with a polynomial all of whose coefficients lie in F . The cost of this
approach would be O(k2) operations in E, and hence O(k2`2) operations in F .

A more efficient approach is the following. Substituting ξ for Y in the identity
(20.1), we have

φ(ξ) =
k−1
∏

i=0

(ξ − αq
i

).

Using this formula, we can compute (given the conjugates of α) the value φ(ξ) ∈ E
using O(k) operations in E, and hence O(k`2) operations in F . Now, φ(ξ) is an
element of E, and for computational purposes, it is represented as [g]f for some
polynomial g ∈ F [X] of degree less than `. Moreover, φ(ξ) = [φ]f , and hence
φ ≡ g (mod f). In particular, if k < `, then g = φ; otherwise, if k = `, then
g = φ − f . In either case, we can recover φ from g with an additional O(`)
operations in F .

Thus, given the conjugates of α, we can compute φ using O(k`2) operations in
F . Adding in the cost of computing the conjugates, this gives rise to an algorithm
that computes the minimal polynomial of α using O(k`2 len(q)) operations in F .

In the worst case, then, this algorithm uses O(`3 len(q)) operations in F . A
reasonably careful implementation needs space for storing a constant number of
elements of E, and hence O(`) elements of F . For very small values of q, the
efficiency of this algorithm will be comparable to that of the algorithm in §18.5,
but for large q, it will be much less efficient. Thus, this approach does not really
yield a better algorithm, but it does serve to illustrate some of the ideas of the
theory of finite fields.

20.3 Factoring polynomials: square-free decomposition
In the remaining sections of this chapter, we develop efficient algorithms for fac-
toring polynomials over the finite field F . We begin in this section with a simple
and efficient preprocessing step. Recall that a polynomial is called square-free if it
is not divisible by the square of any polynomial of degree greater than zero. This

20.3 Factoring polynomials: square-free decomposition 527

preprocessing algorithm takes the polynomial to be factored, and partially factors
it into a product of square-free polynomials. Given this algorithm, we can focus
our attention on the problem of factoring square-free polynomials.

Let f ∈ F [X] be a monic polynomial of degree ` > 0. Suppose that f is not
square-free. According to Theorem 19.1, d := gcd(f , D(f)) 6= 1, where D(f) is
the formal derivative of f ; thus, we might hope to get a non-trivial factorization of
f by computing d. However, we have to consider the possibility that d = f . Can
this happen? The answer is “yes,” but if it does happen that d = f , we can still get
a non-trivial factorization of f by other means:

Theorem 20.3. Suppose that f ∈ F [X] is a monic polynomial of degree ` > 0,
and that gcd(f , D(f)) = f . Then f = g(X p) for some g ∈ F [X]. Moreover, if
g =

∑

i aiX
i, then f = hp, where

h =
∑

i

a
p(w−1)

i X i. (20.2)

Proof. Since deg(D(f)) < deg(f) and gcd(f , D(f)) = f , we must have D(f) = 0.
If f =

∑

i ciX
i, then D(f) =

∑

i iciX
i−1. Since this derivative must be zero, it

follows that all the coefficients ci with i 6≡ 0 (mod p) must be zero to begin with.
That proves that f = g(X p) for some g ∈ F [X]. Furthermore, if h is defined as
above, then

hp =
(

∑

i

a
p(w−1)

i X i
)p

=
∑

i

a
pw

i X
ip =

∑

i

ai(X p)i = g(X p) = f . 2

Our goal now is to design an efficient algorithm that takes as input a monic poly-
nomial f ∈ F [X] of degree ` > 0, and outputs a list of pairs ((g1, s1), . . . , (gt, st)),
where

• each gi ∈ F [X] is monic, non-constant, and square-free,
• each si is a positive integer,
• the family of polynomials {gi}ti=1 is pairwise relatively prime, and
• f =

∏t
i=1 g

si
i .

We call such a list a square-free decomposition of f . There are a number of ways
to do this. The algorithm we present is based on the following theorem, which
itself is a simple consequence of Theorem 20.3.

Theorem 20.4. Let f ∈ F [X] be a monic polynomial of degree ` > 0. Suppose
that the factorization of f into irreducibles is f = f

e1
1 · · · f

er
r . Then

f

gcd(f , D(f))
=

∏

1≤i≤r
ei 6≡0 (mod p)

fi.

528 Algorithms for finite fields

Proof. The theorem can be restated in terms of the following claim: for each
i = 1, . . . , r, we have

• f eii | D(f) if ei ≡ 0 (mod p), and

• f ei−1
i | D(f) but f eii - D(f) if ei 6≡ 0 (mod p).

To prove the claim, we take formal derivatives using the usual rule for products,
obtaining

D(f) =
∑

j

ejf
ej−1
j D(fj)

∏

k 6=j

f
ek
k . (20.3)

Consider a fixed index i. Clearly, f eii divides every term in the sum on the right-
hand side of (20.3), with the possible exception of the term with j = i. In the case
where ei ≡ 0 (mod p), the term with j = i vanishes, and that proves the claim in
this case. So assume that ei 6≡ 0 (mod p). By the previous theorem, and the fact
that fi is irreducible, and in particular, not the pth power of any polynomial, we
see that D(fi) is non-zero, and (of course) has degree strictly less than that of fi.
From this, and (again) the fact that fi is irreducible, it follows that the term with
j = i is divisible by f ei−1

i , but not by f eii , from which the claim follows. 2

This theorem provides the justification for the following square-free decompo-
sition algorithm.

Algorithm SFD. On input f , where f ∈ F [X] is a monic polynomial of degree
` > 0, compute a square-free decomposition of f as follows:

initialize an empty list L
s← 1
repeat

j ← 1, g ← f/ gcd(f , D(f))
while g 6= 1 do

f ← f/g, h ← gcd(f , g), m← g/h

if m 6= 1 then append (m, js) to L
g ← h, j ← j + 1

if f 6= 1 then // f is a pth power
// compute a pth root as in (20.2)
f ← f1/p, s← ps

until f = 1
output L

Theorem 20.5. Algorithm SFD correctly computes a square-free decomposition
of f using O(`2 + `(w − 1) len(p)/p) operations in F .

Proof. Let f =
∏

i f
ei
i be the factorization of the input f into irreducibles. Let S

20.3 Factoring polynomials: square-free decomposition 529

be the set of indices i such that ei 6≡ 0 (mod p), and let S ′ be the set of indices
i such that ei ≡ 0 (mod p). Also, for j ≥ 1, let S≥j := {i ∈ S : ei ≥ j} and
S=j := {i ∈ S : ei = j}.

Consider the first iteration of the main loop. By Theorem 20.4, the value first
assigned to g is

∏

i∈S fi. It is straightforward to prove by induction on j that at
the beginning of the jth iteration of the inner while loop, the value assigned to g is
∏

i∈S≥j fi, and the value assigned to f is
∏

i∈S≥j f
ei−j+1
i ·

∏

i∈S ′ f
ei
i . Moreover, in

the jth loop iteration, the value assigned to m is
∏

i∈S=j
fi. It follows that when the

while loop terminates, the value assigned to f is
∏

i∈S ′ f
ei
i , and the value assigned

to L is a square-free decomposition of
∏

i∈S f
ei
i ; if f does not equal 1 at this

point, then subsequent iterations of the main loop will append to L a square-free
decomposition of

∏

i∈S ′ f
ei
i .

That proves the correctness of the algorithm. Now consider its running time.
Again, consider just the first iteration of the main loop. The cost of computing
f/ gcd(f , D(f)) is at most C1`

2 operations in F , for some constant C1. Now
consider the cost of the inner while loop. It is not hard to see that the cost of the
jth iteration of the inner while loop is at most

C2`
∑

i∈S≥j

deg(fi)

operations in F , for some constant C2. This follows from the observation in the
previous paragraph that the value assigned to g is

∏

i∈S≥j fi, along with our usual
cost estimates for division and Euclid’s algorithm. Therefore, the total cost of all
iterations of the inner while loop is at most

C2`
∑

j≥1

∑

i∈S≥j

deg(fi)

operations in F . In this double summation, for each i ∈ S, the term deg(fi) is
counted exactly ei times, and so we can write this cost estimate as

C2`
∑

i∈S

ei deg(fi) ≤ C2`
2.

Finally, it is easy to see that in the if-then statement at the end of the main loop
body, if the algorithm does in fact compute a pth root, then this takes at most

C3`(w − 1) len(p)/p

operations in F , for some constant C3. Thus, we have shown that the total cost of
the first iteration of the main loop is at most

(C1 + C2)`2 + C3`(w − 1) len(p)/p

530 Algorithms for finite fields

operations in F . If the main loop is executed a second time, the degree of f at the
start of the second iteration is at most `/p, and hence the cost of the second loop
iteration is at most

(C1 + C2)(`/p)2 + C3(`/p)(w − 1) len(p)/p

operations in F . More generally, for t = 1, 2, . . . , the cost of loop iteration t is at
most

(C1 + C2)(`/pt−1)2 + C3(`/pt−1)(w − 1) len(p)/p,

operations in F , and summing over all t ≥ 1 yields the stated bound. 2

20.4 Factoring polynomials: the Cantor–Zassenhaus algorithm
In this section, we present an algorithm due to Cantor and Zassenhaus for factoring
a given polynomial over the finite field F into irreducibles. We shall assume that
the input polynomial is square-free, using Algorithm SFD in §20.3 as a preprocess-
ing step, if necessary. The algorithm has two stages:

Distinct Degree Factorization: The input polynomial is decomposed into factors
so that each factor is a product of distinct irreducibles of the same degree
(and the degree of those irreducibles is also determined).

Equal Degree Factorization: Each of the factors produced in the distinct degree
factorization stage are further factored into their irreducible factors.

The algorithm we present for distinct degree factorization is a deterministic,
polynomial-time algorithm. The algorithm we present for equal degree factoriza-
tion is a probabilistic algorithm that runs in expected polynomial time (and whose
output is always correct).

20.4.1 Distinct degree factorization
The problem, more precisely stated, is this: given a monic, square-free polynomial
f ∈ F [X] of degree ` > 0, produce a list of pairs ((g1, k1), . . . , (gt, kt)) where

• each gi is the product of monic irreducible polynomials of degree ki, and

• f =
∏t

i=1 gi.

This problem can be easily solved using Theorem 19.10, using a simple variation
of the algorithm we discussed in §20.1 for irreducibility testing. The basic idea is
this. We can compute g := gcd(X q − X , f), so that g is the product of all the
linear factors of f . After removing all linear factors from f , we next compute
gcd(X q

2−X , f), which will be the product of all the quadratic irreducibles dividing
f , and we can remove these from f—although X q

2 − X is the product of all linear

20.4 Factoring polynomials: the Cantor–Zassenhaus algorithm 531

and quadratic irreducibles, since we have already removed the linear factors from
f , the gcd will give us just the quadratic factors of f . In general, for k = 1, . . . , `,
having removed all the irreducible factors of degree less than k from f , we compute
gcd(X q

k − X , f) to obtain the product of all the irreducible factors of f of degree
k, and then remove these from f .

The above discussion leads to the following algorithm for distinct degree factor-
ization.

Algorithm DDF. On input f , where f ∈ F [X] is a monic square-free polynomial
of degree ` > 0, do the following:

initialize an empty list L
h← X mod f
k ← 0
while f 6= 1 do

h ← hq mod f , k ← k + 1
g ← gcd(h − X , f)
if g 6= 1 then

append (g, k) to L
f ← f/g

h← h mod f
output L

The correctness of Algorithm DDF follows from the discussion above. As for
the running time:

Theorem 20.6. Algorithm DDF uses O(`3 len(q)) operations in F .

Proof. Note that the body of the main loop is executed at most ` times, since after
` iterations, we will have removed all the factors of f . Thus, we perform at most
` qth-powering steps, each of which takes O(`2 len(q)) operations in F , and so the
total contribution to the running time of these is O(`3 len(q)) operations in F . We
also have to take into account the cost of the gcd and division computations. The
cost per loop iteration of these is O(`2) operations in F , contributing a term of
O(`3) to the total operation count. This term is dominated by the cost of the qth-
powering steps, and so the total cost of Algorithm DDF is O(`3 len(q)) operations
in F . 2

532 Algorithms for finite fields

20.4.2 Equal degree factorization
The problem, more precisely stated, is this: given a monic polynomial f ∈ F [X]
of degree ` > 0, and an integer k > 0, such that f is of the form

f = f1 · · · fr

for distinct monic irreducible polynomials f1, . . . ,fr, each of degree k, compute
these irreducible factors of f . Note that given f and k, the value of r is easily
determined, since r = `/k.

We begin by discussing the basic mathematical ideas that will allow us to effi-
ciently split f into two non-trivial factors, and then we present a somewhat more
elaborate algorithm that completely factors f .

By the Chinese remainder theorem, we have an F -algebra isomorphism

θ : E → E1 × · · · × Er
[g]f 7→ ([g]f1 , . . . , [g]fr),

where E is the F -algebra F [X]/(f), and for i = 1, . . . , r, Ei is the extension field
F [X]/(fi) of degree k over F .

Recall that q = pw. We have to treat the cases p = 2 and p > 2 separately. We
first treat the case p = 2. Let us define the polynomial

Mk :=
wk−1
∑

j=0

X 2j ∈ F [X]. (20.4)

(The algorithm in the case p > 2 will only differ in the definition of Mk.)
For α ∈ E, if θ(α) = (α1, . . . , αr), then we have

θ(Mk(α)) =Mk(θ(α)) = (Mk(α1), . . . ,Mk(αr)).

Note that each Ei is an extension of Z2 of degree wk, and that

Mk(αi) =
wk−1
∑

j=0

α2j
i = TrEi/Z2 (αi),

where TrEi/Z2 : Ei → Z2 is the trace from Ei to Z2, which is a surjective, Z2-linear
map (see §19.4).

Now, suppose we choose α ∈ E at random. Then if θ(α) = (α1, . . . , αr), the fam-
ily of random variables {αi}ri=1 is mutually independent, with each αi uniformly
distributed over Ei. It follows that the family of random variables {Mk(αi)}ri=1 is
mutually independent, with each Mk(αi) uniformly distributed over Z2. Thus, if
g := rep(Mk(α)) (i.e., g ∈ F [X] is the polynomial of degree less than ` such that
Mk(α) = [g]f), then gcd(g, f) will be the product of those factors fi of f such
that Mk(αi) = 0. We will fail to get a non-trivial factorization only if the Mk(αi)

20.4 Factoring polynomials: the Cantor–Zassenhaus algorithm 533

are either all 0 or all 1, which for r ≥ 2 happens with probability at most 1/2 (the
worst case being when r = 2).

That is our basic splitting strategy. The algorithm for completely factoring f
works as follows. The algorithm proceeds in stages. At any stage, we have a partial
factorization f =

∏

h∈H h, where H is a set of non-constant, monic polynomials.
Initially, H = {f}. With each stage, we attempt to get a finer factorization of f
by trying to split each h ∈ H using the above splitting strategy—if we succeed in
splitting h into two non-trivial factors, then we replace h by these two factors. We
continue in this way until |H | = r.

Here is the full equal degree factorization algorithm.

Algorithm EDF. On input f , k, where f ∈ F [X] is a monic polynomial of degree
` > 0, and k is a positive integer, such that f is the product of r := `/k distinct
monic irreducible polynomials, each of degree k, do the following, with Mk as
defined in (20.4):

H ← {f}
while |H | < r do

H ′ ← ∅
for each h ∈ H do

choose α ∈ F [X]/(h) at random
d← gcd(rep(Mk(α)), h)
if d = 1 or d = h

then H ′ ← H ′ ∪ {h}
else H ′ ← H ′ ∪ {d, h/d}

H ← H ′

output H

The correctness of the algorithm is clear from the above discussion. As for its
expected running time, we can get a quick-and-dirty upper bound as follows:

• For a given h and α ∈ F [X]/(h), the value Mk(α) can be computed using
O(k deg(h)2 len(q)) operations in F , and so the number of operations in F
performed in each iteration of the main loop is at most a constant times

k len(q)
∑

h∈H

deg(h)2 ≤ k len(q)
(

∑

h∈H

deg(h)
)2

= k`2 len(q).

• The expected number of iterations of the main loop until we get some non-
trivial split is O(1).

• The algorithm finishes after getting r − 1 non-trivial splits.

534 Algorithms for finite fields

• Therefore, the total expected cost is O(rk`2 len(q)), or O(`3 len(q)), oper-
ations in F .

This analysis gives a bit of an over-estimate — it does not take into account the
fact that we expect to get fairly “balanced” splits. For the purposes of analyzing
the overall running time of the Cantor–Zassenhaus algorithm, this bound suffices;
however, the following analysis gives a tight bound on the complexity of Algo-
rithm EDF.

Theorem 20.7. In the case p = 2, Algorithm EDF uses an expected number of
O(k`2 len(q)) operations in F .

Proof. We may assume r ≥ 2. Let L be the random variable that represents the
number of iterations of the main loop of the algorithm. For n ≥ 1, let Hn be
the random variable that represents the value of H at the beginning of the nth
loop iteration. For i, j = 1, . . . , r, we define Lij to be the largest value of n (with
1 ≤ n ≤ L) such that fi | h and fj | h for some h ∈ Hn.

We first claim that E[L] = O(len(r)). To prove this claim, we make use of the
fact (see Theorem 8.17) that

E[L] =
∑

n≥1

P[L ≥ n].

Now, L ≥ n if and only if for some i, j with 1 ≤ i < j ≤ r, we have Lij ≥ n.
Moreover, if fi and fj have not been separated at the beginning of one loop itera-
tion, then they will be separated at the beginning of the next with probability 1/2.
It follows that

P[Lij ≥ n] = 2−(n−1).

So we have

P[L ≥ n] ≤
∑

i<j

P[Lij ≥ n] ≤ r22−n.

Therefore,

E[L] =
∑

n≥1

P[L ≥ n] =
∑

n≤2 log2 r

P[L ≥ n] +
∑

n>2 log2 r

P[L ≥ n]

≤ 2 log2 r +
∑

n>2 log2 r

r22−n ≤ 2 log2 r +
∑

n≥0

2−n = 2 log2 r + 2,

which proves the claim.
As discussed in the paragraph above this theorem, the cost of each iteration of

the main loop is O(k`2 len(q)) operations in F . Combining this with the fact that
E[L] = O(len(r)), it follows that the expected number of operations in F for the

20.4 Factoring polynomials: the Cantor–Zassenhaus algorithm 535

entire algorithm is O(len(r)k`2 len(q)). This is significantly better than the above
quick-and-dirty estimate, but is not quite the result we are after. For this, we have
to work a little harder.

For each polynomial h dividing f , define ω(h) to be the number of irreducible
factors of h. Let us also define the random variable

S :=
L
∑

n=1

∑

h∈Hn

ω(h)2.

It is easy to see that the total number of operations performed by the algorithm is
O(Sk3 len(q)), and so it will suffice to show that E[S] = O(r2).

We claim that

S =
∑

i,j

Lij,

where the sum is over all i, j = 1, . . . , r. To see this, define δij(h) to be 1 if both fi
and fj divide h, and 0 otherwise. Then we have

S =
∑

n

∑

h∈Hn

∑

i,j

δij(h) =
∑

i,j

∑

n

∑

h∈Hn

δij(h) =
∑

i,j

Lij,

which proves the claim.
We can write

S =
∑

i 6=j

Lij +
∑

i

Lii =
∑

i 6=j

Lij + rL.

For i 6= j, we have

E[Lij] =
∑

n≥1

P[Lij ≥ n] =
∑

i≥1

2−(n−1) = 2,

and so

E[S] =
∑

i 6=j

E[Lij] + r E[L] = 2r(r − 1) + O(r len(r)) = O(r2).

That proves the theorem. 2

That completes the discussion of Algorithm EDF in the case p = 2. Now assume
that p > 2, so that p, and hence also q, is odd. Algorithm EDF in this case is exactly
the same as above, except that in this case, we define the polynomial Mk as

Mk := X (qk−1)/2 − 1 ∈ F [X]. (20.5)

Just as before, for α ∈ E with θ(α) = (α1, . . . , αr), we have

θ(Mk(α)) =Mk(θ(α)) = (Mk(α1), . . . ,Mk(αr)).

536 Algorithms for finite fields

Note that each group E∗i is a cyclic group of order qk − 1, and therefore, the image
of the (qk − 1)/2-power map on E∗i is {±1}.

Now, suppose we choose α ∈ E at random. Then if θ(α) = (α1, . . . , αr), the fam-
ily of random variables {αi}ri=1 is mutually independent, with each αi uniformly
distributed over Ei. It follows that the family of random variables {Mk(αi)}ri=1
is mutually independent. If αi = 0, which happens with probability 1/qk, then

Mk(αi) = −1; otherwise, α(qk−1)/2
i is uniformly distributed over {±1}, and so

Mk(αi) is uniformly distributed over {0,−2}. That is to say,

Mk(αi) =







0 with probability (qk − 1)/2qk,
−1 with probability 1/qk,
−2 with probability (qk − 1)/2qk.

Thus, if g := rep(Mk(α)), then gcd(g, f) will be the product of those factors fi of
f such that Mk(αi) = 0. We will fail to get a non-trivial factorization only if the
Mk(αi) are either all zero or all non-zero. Assume r ≥ 2. Consider the worst case,
namely, when r = 2. In this case, a simple calculation shows that the probability
that we fail to split these two factors is

(qk − 1
2qk

)2
+
(qk + 1

2qk

)2
=

1
2

(1 + 1/q2k).

The (very) worst case is when qk = 3, in which case the probability of failure is at
most 5/9.

The same quick-and-dirty analysis given just above Theorem 20.7 applies here
as well, but just as before, we can do better:

Theorem 20.8. In the case p > 2, Algorithm EDF uses an expected number of
O(k`2 len(q)) operations in F .

Proof. The analysis is essentially the same as in the case p = 2, except that now
the probability that we fail to split a given pair of irreducible factors is at most 5/9,
rather than equal to 1/2. The details are left as an exercise for the reader. 2

20.4.3 Analysis of the whole algorithm
Given an arbitrary monic square-free polynomial f ∈ F [X] of degree ` > 0, the
distinct degree factorization step takes O(`3 len(q)) operations in F . This step
produces a number of polynomials that must be further subjected to equal degree
factorization. If there are t such polynomials, where the ith polynomial has degree
`i, for i = 1, . . . , t, then

∑t
i=1 `i = `. Now, the equal degree factorization step

for the ith polynomial takes an expected number of O(`3i len(q)) operations in F
(actually, our initial, “quick and dirty” estimate is good enough here), and so it

20.4 Factoring polynomials: the Cantor–Zassenhaus algorithm 537

follows that the total expected cost of all the equal degree factorization steps is
O(
∑

i `
3
i len(q)), which is O(`3 len(q)), operations in F . Putting this all together,

we conclude:

Theorem 20.9. The Cantor–Zassenhaus factoring algorithm uses an expected
number of O(`3 len(q)) operations in F .

This bound is tight, since in the worst case, when the input is irreducible, the
algorithm really does do this much work. Also, we have assumed the input to
the Cantor–Zassenhaus is a square-free polynomial. However, we may use Algo-
rithm SFD as a preprocessing step to ensure that this is the case. Even if we include
the cost of this preprocessing step, the running time estimate in Theorem 20.9
remains valid.

EXERCISE 20.6. Show how to modify Algorithm DDF so that the main loop halts
as soon as 2k > deg(f).

EXERCISE 20.7. Suppose that in Algorithm EDF, we replace the two lines

for each h ∈ H do
choose α ∈ F [X]/(h) at random

by the following:

choose a0, . . . , a2k−1 ∈ F at random
g ←

∑2k−1
j=0 ajX

j ∈ F [X]
for each h ∈ H do

α ← [g]h ∈ F [X]/(h)

Show that the expected running time bound of Theorem 20.6 still holds (you may
assume p = 2 for simplicity).

EXERCISE 20.8. This exercise extends the techniques developed in Exercise 20.1.
Let f ∈ F [X] be a monic polynomial of degree ` > 0, and let ξ := [X]f ∈ E,
where E := F [X]/(f). For each integer m > 0, define polynomials

Tm := X + X q + · · · + X q
m−1
∈ F [X] and Nm := X · X q · · · · · X q

m−1
∈ F [X].

(a) Given as input ξq
m ∈ E and ξq

m′ ∈ E, where m and m′ are positive integers,
along with Tm(α) and Tm′ (α), for some α ∈ E, show how to compute the
values ξq

m+m′
and Tm+m′ (α), using O(`2.5) operations in F , and space for

O(`1.5) elements of F .

(b) Given as input ξq ∈ E, α ∈ E, and a positive integer m, show how to

538 Algorithms for finite fields

compute (using part (a)) the value Tm(α), using O(`2.5 len(m)) operations
in F , and space for O(`1.5) elements of F .

(c) Repeat parts (a) and (b), except with “N” in place of “T .”

EXERCISE 20.9. Using the result of the previous exercise, show how to implement
Algorithm EDF so that it uses an expected number of

O(len(k)`2.5 + `2 len(q))

operations in F , and space for O(`1.5) elements of F .

EXERCISE 20.10. This exercise depends on the concepts and results in §18.6. Let
E be an extension field of degree ` over F , specified by an irreducible polynomial
of degree ` over F . Design and analyze an efficient probabilistic algorithm that
finds a normal basis for E over F (see Exercise 19.14). Hint: there are a number
of approaches to solving this problem; one way is to start by factoring X ` − 1
over F , and then turn the construction in Theorem 18.12 into an efficient proba-
bilistic procedure; if you mimic Exercise 11.2, your entire algorithm should use
O(`3 len(`) len(q)) operations in F (or O(len(r)`3 len(q)) operations, where r is
the number of distinct irreducible factors of X ` − 1 over F).

20.5 Factoring polynomials: Berlekamp’s algorithm
We now develop an alternative algorithm, due to Berlekamp, for factoring a poly-
nomial over the finite field F into irreducibles. We shall assume that the input
polynomial is square-free, using Algorithm SFD in §20.3 as a preprocessing step,
if necessary.

Let us now assume we have a monic square-free polynomial f ∈ F [X] of degree
` > 0 that we want to factor into irreducibles. We first present the mathematical
ideas underpinning the algorithm.

Let E be the F -algebra F [X]/(f). Let σ be the Frobenius map on E over F ,
which maps α ∈ E to αq ∈ E. We know that σ is an F -algebra homomorphism (see
Theorem 19.7). Consider the subalgebra B of E fixed by σ (see Theorem 16.6).
Thus,

B = {α ∈ E : αq = α}.

The subalgebraB is called the Berlekamp subalgebra ofE. Let us take a closer
look at it. Suppose that f factors into irreducibles as

f = f1 · · · fr,

20.5 Factoring polynomials: Berlekamp’s algorithm 539

and let
θ : E → E1 × · · · × Er

[g]f 7→ ([g]f1 , . . . , [g]fr)

be the F -algebra isomorphism from the Chinese remainder theorem, where Ei :=
F [X]/(fi) is an extension field of F of finite degree for i = 1, . . . , r. Now, for
α ∈ E, if θ(α) = (α1, . . . , αr), then we have αq = α if and only if αqi = αi for
i = 1, . . . , r; moreover, by Theorem 19.8, we know that for all αi ∈ Ei, we have
α
q
i = αi if and only if αi ∈ F . Thus, we may characterize B as follows:

B = {θ−1(c1, . . . , cr) : c1, . . . , cr ∈ F}.

Since B is a subalgebra of E, then as F -vector spaces, B is a subspace of E.
Of course, E has dimension ` over F , with the natural basis {ξi−1}`i=1, where
ξ := [X]f . As for the Berlekamp subalgebra, from the above characterization of B,
it is evident that the elements

θ−1(1, 0, . . . , 0), θ−1(0, 1, 0, . . . , 0), . . . , θ−1(0, . . . , 0, 1)

form a basis for B over F , and hence, B has dimension r over F .
Now we come to the actual factoring algorithm.

Stage 1: Construct a basis for B
The first stage of Berlekamp’s factoring algorithm constructs a basis for B over F .
We can easily do this using Gaussian elimination, as follows. Let ρ : E → E be
the map that sends α ∈ E to σ(α) − α = αq − α. Since σ is an F -linear map, the
map ρ is also F -linear. Moreover, the kernel of ρ is none other than the Berlekamp
subalgebra B. So to find a basis for B, we simply need to find a basis for the kernel
of ρ using Gaussian elimination over F , as in §14.4.

To perform the Gaussian elimination, we need to choose a basis S for E over
F , and construct the matrix Q := MatS ,S (ρ) ∈ F `×`, that is, the matrix of ρ with
respect to this basis, as in §14.2, so that evaluation of ρ corresponds to multiplying
a row vector on the right by Q. We are free to choose a basis in any convenient
way, and the most convenient basis, of course, is S := {ξi−1}`i=1, since for compu-
tational purposes, we already represent an element α ∈ E by its coordinate vector
VecS (α). The matrix Q, then, is the ` × ` matrix whose ith row, for i = 1, . . . , `, is
VecS (ρ(ξi−1)). Note that if α = ξq, then ρ(ξi−1) = (ξi−1)q−ξi−1 = (ξq)i−1−ξi−1 =
αi−1−ξi−1. This observation allows us to construct the rows ofQ by first computing
ξq via repeated squaring, and then just computing successive powers of ξq.

After we construct the matrix Q, we apply Gaussian elimination to get row vec-
tors v1, . . . , vr that form a basis for the row null space of Q. It is at this point that

540 Algorithms for finite fields

our algorithm actually discovers the number r of irreducible factors of f . Our basis
for B is {βi}ri=1, where VecS (βi) = vi for i = 1, . . . , r.

Putting this all together, we have the following algorithm to compute a basis for
the Berlekamp subalgebra.

Algorithm B1. On input f , where f ∈ F [X] is a monic square-free polynomial
of degree ` > 0, do the following, where E := F [X]/(f), ξ := [X]f ∈ E, and
S := {ξi−1}`i=1:

let Q be an ` × ` matrix over F (initially with undefined entries)
compute α ← ξq using repeated squaring
β ← 1E
for i← 1 to ` do // invariant: β = αi−1 = (ξi−1)q

Rowi(Q) ← VecS (β), Q(i, i) ← Q(i, i) − 1, β ← βα

compute a basis {vi}ri=1 of the row null space of Q using
Gaussian elimination

for i = 1, . . . , r do βi ← Vec−1
S (vi)

output {βi}ri=1

The correctness of Algorithm B1 is clear from the above discussion. As for the
running time:

Theorem 20.10. Algorithm B1 uses O(`3 + `2 len(q)) operations in F .

Proof. This is just a matter of counting. The computation of α takes O(len(q))
operations in E using repeated squaring, and hence O(`2 len(q)) operations in F .
To build the matrix Q, we have to perform an additional O(`) operations in E to
compute the successive powers of α, which translates into O(`3) operations in F .
Finally, the cost of Gaussian elimination is an additional O(`3) operations in F . 2

Stage 2: Splitting with a basis for B
The second stage of Berlekamp’s factoring algorithm is a probabilistic procedure
that factors f using a basis {βi}ri=1 for B. As we did with Algorithm EDF in
§20.4.2, we begin by discussing how to efficiently split f into two non-trivial fac-
tors, and then we present a somewhat more elaborate algorithm that completely
factors f .

Let M1 ∈ F [X] be the polynomial defined by (20.4) and (20.5); that is,

M1 :=
{

∑w−1
j=0 X

2j if p = 2,
X (q−1)/2 − 1 if p > 2.

Using our basis forB, we can easily generate a random element β ofB by simply

20.5 Factoring polynomials: Berlekamp’s algorithm 541

choosing c1, . . . , cr at random, and computing β :=
∑

i ciβi. If θ(β) = (b1, . . . , br),
then the family of random variables {bi}ri=1 is mutually independent, with each bi
uniformly distributed over F . Just as in Algorithm EDF, gcd(rep(M1(β)), f) will
be a non-trivial factor of f with probability at least 1/2, if p = 2, and probability
at least 4/9, if p > 2.

That is the basic splitting strategy. We turn this into an algorithm to completely
factor f using the same technique of iterative refinement that was used in Algo-
rithm EDF. That is, at any stage of the algorithm, we have a partial factorization
f =

∏

h∈H h, which we try to refine by attempting to split each h ∈ H using
the strategy outlined above. One technical difficulty is that to split such a poly-
nomial h, we need to efficiently generate a random element of the Berlekamp
subalgebra of F [X]/(h). A particularly efficient way to do this is to use our
basis for the Berlekamp subalgebra of F [X]/(f) to generate a random element
of the Berlekamp subalgebra of F [X]/(h) for all h ∈ H simultaneously. Let
gi := rep(βi) for i = 1, . . . , r. If we choose c1, . . . , cr ∈ F at random, and set
g := c1g1 + · · ·+ crgr, then [g]f is a random element of the Berlekamp subalgebra
of F [X]/(f), and by the Chinese remainder theorem, it follows that the family
of random variables {[g]h}h∈H is mutually independent, with each [g]h uniformly
distributed over the Berlekamp subalgebra of F [X]/(h).

Here is the algorithm for completely factoring a polynomial, given a basis for
the corresponding Berlekamp subalgebra.

Algorithm B2. On input f , {βi}ri=1, where f ∈ F [X] is a monic square-free poly-
nomial of degree ` > 0, and {βi}ri=1 is a basis for the Berlekamp subalgebra of
F [X]/(f), do the following, where gi := rep(βi) for i = 1, . . . , r:

H ← {f}
while |H | < r do

choose c1, . . . , cr ∈ F at random
g ← c1g1 + · · · + crgr ∈ F [X]
H ′ ← ∅
for each h ∈ H do

β ← [g]h ∈ F [X]/(h)
d← gcd(rep(M1(β)), h)
if d = 1 or d = h

then H ′ ← H ′ ∪ {h}
else H ′ ← H ′ ∪ {d, h/d}

H ← H ′

output H

542 Algorithms for finite fields

The correctness of the algorithm is clear. As for its expected running time, we
can get a quick-and-dirty upper bound as follows:

• The cost of generating g in each loop iteration is O(r`) operations in F .
For a given h, the cost of computing β := [g]h ∈ F [X]/(h) is O(` deg(h))
operations in F , and the cost of computing M1(β) is O(deg(h)2 len(q))
operations in F . Therefore, the number of operations in F performed in
each iteration of the main loop is at most a constant times

r` + `
∑

h∈H

deg(h) + len(q)
∑

h∈H

deg(h)2

≤ 2`2 + len(q)
(

∑

h∈H

deg(h)
)2

= O(`2 len(q)).

• The expected number of iterations of the main loop until we get some non-
trivial split is O(1).

• The algorithm finishes after getting r − 1 non-trivial splits.

• Therefore, the total expected cost is O(r`2 len(q)) operations in F .

A more careful analysis reveals:

Theorem 20.11. Algorithm B2 uses an expected number of

O(len(r)`2 len(q))

operations in F .

Proof. The proof follows the same line of reasoning as the analysis of Algo-
rithm EDF. Indeed, using the same argument as was used there, the expected
number of iterations of the main loop is O(len(r)). As discussed in the paragraph
above this theorem, the cost per loop iteration is O(`2 len(q)) operations in F . The
theorem follows. 2

The bound in the above theorem is tight (see Exercise 20.11 below): unlike
Algorithm EDF, we cannot make the multiplicative factor of len(r) go away.

Putting together Algorithms B1 and B2, we get Berlekamp’s complete factoring
algorithm. The running time bound is easily estimated from the results already
proved:

Theorem 20.12. Berlekamp’s factoring algorithm uses an expected number of
O(`3 + `2 len(`) len(q)) operations in F .

We have assumed the input to Berlekamp’s algorithm is a square-free polyno-
mial. However, we may use Algorithm SFD as a preprocessing step to ensure that

20.5 Factoring polynomials: Berlekamp’s algorithm 543

this is the case. Even if we include the cost of this preprocessing step, the running
time estimate in Theorem 20.12 remains valid.

So we see that Berlekamp’s algorithm is faster than the Cantor–Zassenhaus algo-
rithm, whose expected operation count is O(`3 len(q)). The speed advantage of
Berlekamp’s algorithm grows as q gets large. The one disadvantage of Berlekamp’s
algorithm is space: it requires space for Θ(`2) elements of F , while the Cantor–
Zassenhaus algorithm requires space for only O(`) elements of F . One can in fact
implement the Cantor–Zassenhaus algorithm so that it uses O(`3 + `2 len(q)) oper-
ations in F , while using space for only O(`1.5) elements of F —see Exercise 20.13
below.

EXERCISE 20.11. Give an example of a family of input polynomials that cause
Algorithm B2 to use an expected number of at least Ω(`2 len(`) len(q)) operations
in F . Assume that computing M1(β) for β ∈ F [X]/(h) takes Ω(deg(h)2 len(q))
operations in F .

EXERCISE 20.12. Using the ideas behind Berlekamp’s factoring algorithm, devise
a deterministic irreducibility test that, given a monic polynomial of degree ` over
F , uses O(`3 + `2 len(q)) operations in F .

EXERCISE 20.13. This exercise develops a variant of the Cantor–Zassenhaus
algorithm that uses O(`3 + `2 len(q)) operations in F , while using space for only
O(`1.5) elements of F . By making use the variant of Algorithm EDF discussed
in Exercise 20.9, our problem is reduced to that of implementing Algorithm DDF
within the stated time and space bounds, assuming that the input polynomial is
square-free.

(a) Show that for all non-negative integers i, j, with i 6= j, the irreducible poly-
nomials in F [X] that divide X q

i − X qj are precisely those whose degree
divides i − j.

(b) Let f ∈ F [X] be a monic polynomial of degree ` > 0, and let m = O(`1/2).
Let ξ := [X]f ∈ E, where E := F [X]/(f). Show how to compute

ξq, ξq
2
, . . . , ξq

m−1
∈ E and ξq

m

, ξq
2m

, . . . , ξq
(m−1)m

∈ E

using O(`3 + `2 len(q)) operations in F , and space for O(`1.5) elements of
F .

(c) Combine the results of parts (a) and (b) to implement Algorithm DDF on
square-free inputs of degree `, so that it uses O(`3 + `2 len(q)) operations
in F , and space for O(`1.5) elements of F .

544 Algorithms for finite fields

20.6 Deterministic factorization algorithms (∗)
The algorithms of Cantor and Zassenhaus and of Berlekamp are probabilistic. The
exercises below develop a deterministic variant of the Cantor–Zassenhaus algo-
rithm. (One can also develop deterministic variants of Berlekamp’s algorithm,
with similar complexity.)

This algorithm is only practical for finite fields of small characteristic, and is
anyway mainly of theoretical interest, since from a practical perspective, there is
nothing wrong with the above probabilistic method. In all of these exercises, we
assume that we have access to a basis {εi}wi=1 for F as a vector space over Zp.

To make the Cantor–Zassenhaus algorithm deterministic, we only need to
develop a deterministic variant of Algorithm EDF, as Algorithm DDF is already
deterministic.

EXERCISE 20.14. Let f = f1 · · · fr, where the fi’s are distinct monic irreducible
polynomials in F [X]. Assume that r > 1, and let ` := deg(f). For this exercise,
the degrees of the fi’s need not be the same. For an intermediate field F ′, with
Zp ⊆ F ′ ⊆ F , let us call a set S = {λ1, . . . , λs}, where each λu ∈ F [X] with
deg(λu) < `, a separating set for f over F ′ if the following conditions hold:

• for i = 1, . . . , r and u = 1, . . . , s, there exists cui ∈ F ′ such that λu ≡
cui (mod fi), and

• for every pair of distinct indices i, j, with 1 ≤ i < j ≤ r, there exists
u = 1, . . . , s such that cui 6= cuj.

Show that if S is a separating set for f over Zp, then the following algorithm
completely factors f using O(p|S|`2) operations in F .

H ← {f}
for each λ ∈ S do

for each a ∈ Zp do
H ′ ← ∅
for each h ∈ H do

d← gcd(λ − a, h)
if d = 1 or d = h

then H ′ ← H ′ ∪ {h}
else H ′ ← H ′ ∪ {d, h/d}

H ← H ′

output H

EXERCISE 20.15. Let f be as in the previous exercise. Show that if S is a

20.6 Deterministic factorization algorithms (∗) 545

separating set for f over F , then the set

S ′ :=
{

w−1
∑

i=0

(εjλ)p
i

mod f : 1 ≤ j ≤ w, λ ∈ S
}

is a separating set for f over Zp. Show how to compute this set using
O(|S|`2 len(p)w(w − 1)) operations in F .

EXERCISE 20.16. Let f be as in the previous two exercises, but further suppose
that each irreducible factor of f is of the same degree, say k. Let E := F [X]/(f)
and ξ := [X]f ∈ E. Define the polynomial φ ∈ E[Y] as follows:

φ :=
k−1
∏

i=0

(Y − ξq
i

).

If

φ = Y k + αk−1Y
k−1 + · · · + α0,

with α0, . . . , αk−1 ∈ E, show that the set

S := {rep(αi) : 0 ≤ i ≤ k − 1}

is a separating set for f over F , and can be computed deterministically using
O(k2 + k len(q)) operations in E, and hence O(k2`2 + k`2 len(q)) operations in F .

EXERCISE 20.17. Put together all of the above pieces, together with Algo-
rithms SFD and DDF, so as to obtain a deterministic algorithm for factoring poly-
nomials over F that runs in time at most p times a polynomial in the size of the
input, and make a careful estimate of the running time of your algorithm.

EXERCISE 20.18. It is a fact that when our prime p is odd, then for all integers
a, b, with a 6≡ b (mod p), there exists a non-negative integer i ≤ p1/2 log2 p such
that (a + i | p) 6= (b + i | p) (here, “(· | ·)” is the Legendre symbol). Using this
fact, design and analyze a deterministic algorithm for factoring polynomials over
F that runs in time at most p1/2 times a polynomial in the size of the input.

The following two exercises show that the problem of factoring polynomials
over F reduces in deterministic polynomial time to the problem of finding roots of
polynomials over Zp.

EXERCISE 20.19. Let f be as in Exercise 20.14. Suppose that S = {λ1, . . . , λs}
is a separating set for f over Zp, and φu ∈ F [X] is the minimal polynomial over F
of [λu]f ∈ F [X]/(f) for u = 1, . . . , s. Show that each φu is the product of linear
factors over Zp, and that given S, along with the roots of all the φu’s, we can deter-
ministically factor f using (|S| + `)O(1) operations in F . Hint: see Exercise 16.9.

546 Algorithms for finite fields

EXERCISE 20.20. Using the previous exercise, show that the problem of factoring
a polynomial over F reduces in deterministic polynomial time to the problem of
finding roots of polynomials over Zp.

20.7 Notes
The average-case analysis of Algorithm IPT, assuming its input is random, and
the application to the analysis of Algorithm RIP, is essentially due to Ben-Or [14].
If one implements Algorithm RIP using fast polynomial arithmetic, one gets an
expected cost of O(`2+o(1) len(q)) operations in F . Note that Ben-Or’s analysis
is a bit incomplete — see Exercise 32 in Chapter 7 of Bach and Shallit [11] for a
complete analysis of Ben-Or’s claims.

The asymptotically fastest probabilistic algorithm for constructing an irreducible
polynomial over F of given degree ` is due to Shoup [96]. That algorithm uses an
expected number of O(`2+o(1) +`1+o(1) len(q)) operations in F , and in fact does not
follow the “generate and test” paradigm of Algorithm RIP, but uses a completely
different approach.

As far as deterministic algorithms for constructing irreducible polynomials of
given degree over F , the only known methods are efficient when the characteris-
tic p of F is small (see Chistov [26], Semaev [88], and Shoup [94]), or under a
generalization of the Riemann hypothesis (see Adleman and Lenstra [4]). Shoup
[94] in fact shows that the problem of constructing an irreducible polynomial of
given degree over F is deterministic, polynomial-time reducible to the problem of
factoring polynomials over F .

The algorithm in §20.2 for computing minimal polynomials over finite fields is
due to Gordon [43].

The square-free decomposition of a polynomial over a field of characteristic
zero can be computed using an algorithm of Yun [111] using O(`1+o(1)) field
operations. Yun’s algorithm can be adapted to work over finite fields as well (see
Exercise 14.30 in von zur Gathen and Gerhard [39]).

The Cantor–Zassenhaus algorithm was initially developed by Cantor and
Zassenhaus [24], although many of the basic ideas can be traced back quite a
ways. A straightforward implementation of this algorithm using fast polynomial
arithmetic uses an expected number of O(`2+o(1) len(q)) operations in F .

Berlekamp’s algorithm was initially developed by Berlekamp [15, 16], but again,
the basic ideas go back a long way. A straightforward implementation using fast
polynomial arithmetic uses an expected number of O(`3 + `1+o(1) len(q)) opera-
tions in F ; the term `3 may be replaced by `ω, where ω is the exponent of matrix
multiplication (see §14.6).

There are no known efficient, deterministic algorithms for factoring polynomials

20.7 Notes 547

over F when the characteristic p of F is large (even under a generalization of the
Riemann hypothesis, except in certain special cases).

The asymptotically fastest algorithms for factoring polynomials over F are due
to von zur Gathen, Kaltofen, and Shoup:† the algorithm of von zur Gathen and
Shoup [40] uses an expected number of O(`2+o(1) + `1+o(1) len(q)) operations in
F ; the algorithm of Kaltofen and Shoup [53] has a cost that is subquadratic in the
degree—it uses an expected number of O(`1.815 len(q)0.407) operations in F when
len(q) = O(`1.375). Exercises 20.1, 20.8, and 20.9 are based on [40]. Although
the “fast” algorithms in [40] and [53] are mainly of theoretical interest, a variant
in [53], which uses O(`2.5 + `1+o(1) len(q)) operations in F , and space for O(`1.5)
elements of F , has proven to be quite practical (Exercise 20.13 develops some of
these ideas; see also Shoup [97]).

† The running times of these algorithms can be improved using faster algorithms for modular composition —
see footnote on p. 485.

